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Abstract

The stability and dynamic displacement response of an infinite thin plate resting on a Winkler-type or a two-

parameter elastic foundation have been investigated when the system is subjected to in-plane static compressive forces

and a distributed load moving with a constant advance velocity. The amplitude of the moving load was assumed to be

either constant or of harmonic variation and damping of a linear hysteretic nature for the foundation were considered.

Formulations in the transformed field domains of time, space, and moving space were employed. The steady-state

response to a moving harmonic load and the response to a moving load of constant amplitude were obtained using a

double Fourier transform. Analyses were performed: (i) to investigate the effects of various parameters, such as the load

velocity, load frequency, and damping, on the deflected shapes, maximum displacements, and critical values of the

velocity, frequency, and in-plane compression, and (ii) to examine how the in-plane compression affects the stability and

vibration of the system. Expressions to predict the critical (resonance) velocity, critical frequency, and in-plane buckling

force were proposed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many studies have been performed to predict the deflections and stresses of highway and airfield

pavement systems by employing a plate on an elastic foundation. The surface layer of the pavement

(concrete slab in the rigid pavement and asphalt mixtures in the flexible pavement) is normally modeled

based on the Kirchhoff thin plate theory and the underlying layers are modeled using an elastic foundation,

normally a Winkler-type elastic foundation. When the shear stiffness of the foundation is considered, the

two-parameter foundations, such as Filonenko-Borodich (Filonenko-Borodich, 1940), Pasternak (Paster-

nak, 1954), generalized (Kerr, 1964), and Vlasov (Vlasov and Leontev, 1966) foundations, can be used. The
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loads imposed by vehicles have often been considered as static loads in most studies (Westergaard, 1925;

Huang, 1993). Recently, studies have been performed to predict the pavement response to moving loads by

employing a plate on an elastic foundation since the pavement systems are subjected to moving loads (Kim

and Roesset, 1998; Liu et al., 2000; Kim et al., 2002; Huang and Thambiratnam, 2002). When the moving
loads are considered, the load amplitude is often assumed to be constant. However, the moving loads

created by vehicles in fact have variations in load amplitude with time that result from the pavement surface

roughness and the mechanical systems of the vehicles (Nasim et al., 1991; Kim et al., 2002; Kim and

McCullough, 2003). In addition, nondestructive testing vehicles such as the rolling dynamic deflectometer

apply a steady-state harmonic force while continuously moving (Bay et al., 1995; Kim et al., 1999). The

moving loads with such variations in load amplitude need to be considered in addition to the moving loads

of constant amplitude.

When a plate on an elastic foundation is analyzed with moving loads, it is generally assumed that the
system is subjected to only moving loads and the forces in the plate’s in-plane direction are often ignored.

However, most Portland cement concrete pavement systems are subjected to in-plane compressive forces

due to temperature and moisture changes. If temperature increases, concrete slabs expand and compressive

forces are induced because the slabs push each other. Due to these in-plane compressive forces, the concrete

pavements sometimes experience buckling, which is also called blowup (Kerr and Dallis, 1985). Blowups

are observed in jointed concrete pavements and continuously reinforced concrete pavements. The in-plane

compressive forces are also induced in prestressed concrete pavements due to prestressing (Brunner, 1975;

Cable et al., 1986; Powers and Zaniewski, 1987; Okamoto and Tayabji, 1995). Failures of the prestressed
concrete pavements caused by high compressive forces sometimes occur. Therefore, the effect of the in-

plane compression in the pavement system needs to be investigated when the system is subjected to moving

loads.

The main objective of this paper is to discuss the stability and vibration of a plate resting on an elastic

foundation subjected to in-plane compressive forces under a moving load with either constant or harmonic

amplitude variations. The plate was assumed to extend to infinity in the horizontal plane, and the geometry

and material properties were assumed to be linearly elastic. The elastic foundation was considered as either

a Winkler-type or a two-parameter foundation and damping of a linear hysteretic nature was considered
for the foundation. A distributed load with a constant advance velocity was considered instead of a point

load because moving loads in practice have normally a finite area over which they are distributed and the

point load represents only an extreme case. Formulations in the transformed field domains were developed

and the solutions were obtained using a triple Fourier transform in time, space, and moving space for

moving loads with arbitrary load variation, and a double Fourier transform in space and moving space for

the steady-state response to moving harmonic loads and for the response to moving loads of constant

amplitude. Analyses were performed: (i) to investigate the effects of various parameters, such as the load

velocity, load frequency, and damping, on the displacements and critical values of the velocity, frequency,
and in-plane compressive force, and (ii) to examine how the in-plane compressive force affects the dis-

placement response. By conducting a large number of parametric studies, equations to predict the critical

(resonance) values of the velocity and frequency and the buckling force were developed.
2. Formulations

If a Kirchhoff plate on a Winkler-type elastic foundation is subjected to in-plane static compressive

forces and a dynamic load, as shown in Fig. 1, the governing differential equation of the system with-

out damping for the vertical displacements w at time t can be written in a Cartesian coordinate system
fx; y; zg as
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Fig. 1. Plate on elastic foundation subjected to in-plane compression and moving load.
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where m is the mass of the plate per unit area, k is the vertical stiffness of the foundation per unit area, q is

the vertical load per unit area, Px and Py are the in-plane compressive forces in the x- and y-directions per
unit length, respectively, and DP is the flexural rigidity of the plate defined by
DP ¼ Eh3

12ð1� m2Þ ð2Þ
where E, h and m are the elastic modulus, the thickness and Poisson’s ratio of the plate, respectively.

If the loads are moving in the positive x-direction with a constant advance velocity V , a moving coor-
dinate g can be defined by x� Vt. Then, the governing differential equation in a moving Cartesian coor-

dinate system fg; y; zg can be rewritten as
DP

o4wðg; y; tÞ
og4

�
þ 2

o4wðg; y; tÞ
og2oy2

þ o4wðg; y; tÞ
oy4

�
þ Px

o2wðg; y; tÞ
og2

�
þ Py

o2wðg; y; tÞ
oy2

�

þ m
o2wðg; y; tÞ

ot2

�
� 2V

o2wðg; y; tÞ
otog

þ V 2 o
2wðg; y; tÞ

og2

�
þ kwðg; y; tÞ

¼ qðg; y; tÞ ð3Þ
The solution of Eq. (3) can be obtained using the Fourier transform if the plate is assumed to extend to

infinity in the horizontal plane. If n, f and X are assumed to be the transformed fields of g (moving space), y
(fixed space), and t (time), and if wðg; y; tÞ and qðg; y; tÞ are written in the form of W ðn; f;XÞeiXteingeify and
Qðn; f;XÞeiXteingeify , where i ¼

ffiffiffiffiffiffiffi
�1

p
, the transformed displacements W ðn; f;XÞ can be obtained by
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W ðn; f;XÞ ¼ Qðn; f;XÞ
DPðn2 þ f2Þ2 � ðPxn2 þ Pyf

2Þ þ k � mðX� V nÞ2
ð4Þ
where the transformed load Qðn; f;XÞ is obtained using the triple Fourier transform
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Finally, the dynamic displacement response can be obtained using the triple inverse Fourier transform
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If viscous damping is considered, c owðx;y;tÞ
ot and c owðg;y;tÞ

ot � V owðg;y;tÞ
og

� �
should be added in Eqs. (1) and (3),

respectively, where c is the viscous damping constant. It is generally accepted that most of the dissipation of

energy in soils takes place through internal friction (hysteretic damping) rather than through viscous

behavior. Hysteretic damping produces an energy loss per cycle that is frequency independent. Since the

elastic foundation represents soil deposits in a number of practical applications, frequency-independent
linear hysteretic damping has been considered in this study for the foundation with an expression 2iDk for

the damping term, where D is the damping ratio (Foinquinos and Roesset, 1995). Then, the transformed

displacements in Eq. (4) can be rewritten including damping terms as
W ðn; f;XÞ ¼ Qðn; f;XÞ
DPðn2 þ f2Þ2 � ðPxn2 þ Pyf

2Þ þ kð1þ 2iDÞ � mðX� V nÞ2 þ icðX� V nÞ
ð7Þ
It is noted that the sign of the linear hysteretic damping term needs to be consistent with that of the viscous

damping term. In practice, the above equations are solved using the fast Fourier transform (FFT), which is

a discrete transform.

If the moving load has a harmonic variation of the amplitude ei
�Xt and only the steady-state response is of

interest, the displacement response in Eq. (6) with considering linear hysteretic damping can be rewritten as
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where X is the load frequency. If the response to the force sinXt (the imaginary component of ei
�Xt) is

considered, the imaginary component of Eq. (8) should be used. If a moving load of constant amplitude

(X ¼ 0) is considered, the response can be obtained by inserting 0 into the load frequency X in Eqs. (8) and

(9). Because g is a point on the moving axis, the above equations represent the response at a moving point

with time. The response at a fixed point can simply be obtained by the relation g¼ x� Vt, where x is the

fixed point.

If a two-parameter foundation such as a Pasternak foundation (Pasternak, 1954) is considered to include

the shear stiffness of the foundation, the terms having the in-plane compressive forces Px and Py in Eq. (1)
can be rewritten as
ðPx � k2Þ
o2wðx; y; tÞ

ox2
þ ðPy � k2Þ

o2wðx; y; tÞ
oy2

ð10Þ
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where k2 is the second parameter of the two-parameter foundation. As can be seen from Eq. (10), the

second parameter of the foundation reduces the in-plane compressive forces. Therefore, the differences

between the in-plane compressive forces and the second parameter of the foundation should be used as the

combined compressive forces in Eqs. (3), (4), (6), (7), and (8) if the two-parameter foundation is considered.
If a moving load has loaded lengths of d1and d2 in the g- and y-directions and the load pressure (load per

unit of area) q, the transformed load Q defined in Eqs. (5) and (9) can be obtained, respectively, by
Table

Proper
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m
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h
m

Prop

Tota

d1 a
Qðn; f;XÞ ¼ 4
sin d1n

2
sin d2f

2

nf
e�ing0e�ify0

Z 1

�1
gðtÞe�iXt dt ð11Þ
Qðn; f; tÞ ¼ 4q
sin d1n

2
sin d2f

2

nf
eiXte�ing0e�ify0 ð12Þ
where g0 and y0 are the coordinates of the center of the load and gðtÞ is the variation in load amplitude with

time.

To obtain the response to multiple loads, the superposition method can be used; however, care should be

taken when the steady-state response due to the moving harmonic loads is to be obtained since the
amplitude of the response at each point does not occur at the same time (Kim and Roesset, 1998; Kim and

McCullough, 2003). An alternative to obtain the response to moving multiple loads is to use the combined

transformed load calculated from the multiple loads (Kim et al., 2001, 2002).
3. Behavior under in-plane compressive forces and a moving load of constant amplitude

The dynamic displacement response and buckling of a plate on an elastic foundation subjected to in-

plane compressive forces and a moving load of constant amplitude are investigated first. The material

properties and geometry used in this study are listed in Table 1. The properties in the table have been

selected arbitrarily within the practical ranges of the parameters for the pavement systems. The values of

the parameters not shown in the table, such as load velocity, in-plane compressive force, and damping
value, are considered within wide ranges.

3.1. Deflected shapes

If a plate is sufficiently large and the velocity is constant, the deflected shapes under the moving load of

constant amplitude are the same at any instant along the moving axis. This means that the deflected shape is

moving with the load.
1

ties of plate on elastic foundation and moving load

erties of plate on elastic foundation

1516 MPa

0.35

95 MN/m3

152.4 mm

366 kg/m2

erties of moving load

l load )40 kN
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The effects of the in-plane compressive forces on the deflected shapes along the x- and y-axes are shown
in Fig. 2, when a load velocity is 127 m/s (which is smaller than the critical velocity) and there is no

damping. The 0 distance in the figure represents the location of the center of the load. The deflected shapes

are symmetric with respect to the two axes that pass through the center of the moving load. For the de-
flected shapes along x-axis (or in the moving direction), as shown in Fig. 2a, there are clear upward peaks at

the front and rear of the load, but those peaks are not pronounced in the deflected shapes along y-axis, as
shown in Fig. 2b. If the in-plane compressive force exists in the x-direction, the maximum deflection and the

peaks at the front and rear of the load become larger, and it makes the deflected shape along y-axis wider.
In presence of the in-plane compressive force in the y-direction (Py), the maximum deflection becomes larger

and the deflected shape along y-axis narrower, but it does not seem to affect the peaks at the front and rear

of the moving load. As can be seen in Eqs. (4), (6), (7), and (8), the presence of the in-plane compression

reduces the xxx of the transfer function and makes the deflections larger.
The deflected shapes when there is damping in the system are shown in Fig. 3 for a load velocity of 127

m/s and a damping ratio of 10%. The deflected shapes along y-axis are symmetric with respect to the center

of the load (Fig. 3b), but the deflected shapes in the moving direction are no longer symmetric as shown in

Fig. 3a. The peak that occurs at the front of the load increases and the peak that occurs behind the load

decreases. The maximum deflection does not occur exactly at the center of the load and it occurs slightly
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Fig. 2. Deflected shapes along: (a) x-axis (b) y-axis (D ¼ 0%, V ¼ 127 m/s).
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Fig. 3. Deflected shapes along: (a) x-axis (b) y-axis (D ¼ 10%, V ¼ 127 m/s).
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Fig. 4. Deflected shapes along: (a) x-axis (b) y-axis (D ¼ 5%, V ¼ 230 m/s).
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behind the center of the load. The lag between the center of the load and the position where the maximum

deflection occurs is called distance lag (Kim and Roesset, 1998). The effects of the in-plane compressive

forces on the deflected shapes when there is damping in the system are the same as those when there is no

damping.

The deflected shapes when a velocity is 230 m/s and a damping ratio is 5% are shown in Fig. 4. As will be

mentioned later, the velocity considered here (230 m/s) is higher than the critical (resonance) velocity. The
deflected region is widely spread in this case. For the deflected shapes in the moving direction (Fig. 4a), the

deflected shapes behind and ahead of the load are clearly different. The frequency of the displacement

fluctuations in front of the load is larger than that behind the load. In presence of the in-plane compressive

force in the x-direction, the frequency of the fluctuations in front of the load increases, but that behind the

load decreases. The in-plane compression in the y-direction does not affect the fluctuation frequency. Fig.

4b shows the deflected shapes along y-axis at the x coordinate where the maximum deflection occurs. The

frequency of the displacement fluctuations in the y-direction becomes larger with the in-plane compression

either in the x-direction or in the y-direction.
3.2. Critical velocity and buckling force

The effect of the in-plane compression on the relationship between the maximum deflection and the load
velocity is shown in Fig. 5. As the load velocity increases, the maximum deflection increases until the
0.6

1

1.4

1.8

0 100 200 300
Velocity (m/s)

M
ax

im
um

 d
ef

le
ct

io
n 

(m
m

) Px = Py = 0
Px = 3 MN/m, Py = 0
Px = 0, Py = 3 MN/m

Fig. 5. Relationship between maximum deflection and velocity (D ¼ 5%).
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velocity becomes close to the critical velocity and then decreases again. In presence of the in-plane com-

pression in the moving direction, the critical velocity decreases. However, the in-plane compression in the y-
direction does not affect the critical velocity. It just makes the maximum deflection larger. For velocities

smaller than the critical velocities, the system having the in-plane compression in the moving direction has
the largest maximum deflection compared with the systems having the in-plane compression in the y-
direction with the same load magnitude and having no in-plane compression; however, it has the smallest

maximum deflection for velocities larger than the critical velocities.

Fig. 6 shows the relationship between the distance lag and the velocity. The distance lag increases as the

velocity increases. For velocities near and above the critical velocity, the distance lag becomes significantly

larger. When there is the in-plane compression in the moving direction, the distance lag at a given velocity

becomes slightly larger than that of the system having no in-plane compression for velocities smaller than

the critical velocity and becomes significantly larger for velocities larger than the critical velocity. However,
the in-plane compression in the y-direction affects the distance lag only for velocities much larger than the

critical velocity.

To find an expression for the critical velocity and the critical in-plane compressive force (buckling force),

a number of parametric studies were performed considering wide ranges of variables. It was found that the

size of the loaded area, within the practical range of the tire print area, did not affect the critical velocity. It

was also found that the critical velocity tended to increase very slightly with an increase in the damping
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ratio, but the increase was small enough to be negligible. Finally, the critical velocity Vcr0 for a given in-

plane compression in the moving direction can be predicted by
Vcr0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffi
DPk

p
� Px

m

s
ðwhen Px 6 2

ffiffiffiffiffiffiffiffi
DPk

p
Þ ð13Þ
The critical in-plane compressive force in the moving direction for a given velocity can be obtained by

solving Eq. (13) for Px. Then,
Px cr ¼ 2
ffiffiffiffiffiffiffiffi
DPk

p
� mV 2 ð14Þ
As can be predicted with Eq. (14), the static buckling force (when V ¼ 0) is 2
ffiffiffiffiffiffiffiffi
DPk

p
, and the magnitude of

the buckling force decreases as the velocity increases until the critical velocity. As mentioned previously, the

in-plane compression in the y-direction does not affect the critical velocity. Accordingly, the buckling force

in the y-direction is independent of the velocity and the same as the static buckling force. Fig. 7 shows the

relationship between the critical velocity and the in-plane compression, obtained from the analysis and

predicted by Eq. (13). The results from the analysis and the formula are identical.
4. Behavior under in-plane compressive forces and a moving harmonic load

The dynamic displacement response and buckling of a plate on an elastic foundation are investigated

when subjected to in-plane compressive forces and a moving load with harmonic amplitude variation. First,

the stability and the vibration of the system for a stationary harmonic load (V ¼ 0) are studied. Then, the

maximum displacements under a moving harmonic load are examined for various values of the velocity,

load frequency, and in-plane compressive force. The expressions for the critical values of the velocity,

frequency, and in-plane compressive force are finally developed. Since the in-plane compressive force in the

y-direction does not affect the critical values of the velocity and frequency, only the in-plane compressive

force in the moving direction is considered.
4.1. Response to a stationary harmonic load

The relationship between the maximum displacement and the load frequency for a stationary harmonic

load (V ¼ 0) is shown in Fig. 8. When there is no in-plane compression, the maximum displacement

increases until the load frequency reaches the critical (resonance) frequency and then decreases. When

there is the in-plane compression, two critical frequencies are observed. The first critical frequency is

smaller than the second critical frequency, and it is the same as the critical frequency of the system having

no in-plane compression. For a given frequency smaller than the first critical frequency of the system
having the in-plane compression, the in-plane compression makes the maximum displacement larger;

however, for a given frequency larger than the second critical frequency, the in-plane compression reduces

the maximum displacement but the reduction becomes smaller and can be negligible as the load frequency

increases.

It was also found that the flexural rigidity of the plate, size of the loaded area, and damping ratio did not

affect the critical frequency of the stationary harmonic load when there is no in-plane compression. If the

in-plane compression exists, however, the critical frequency is affected by many parameters but independent

of the loaded area and damping ratio. The critical frequency in Hz (cps) of the stationary harmonic load,
fcr0, can be obtained by
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The second critical frequency is the same as the critical frequency of the system having no in-plane com-

pression and can be determined by
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k
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ð16Þ
The critical in-plane compressive force for a stationary harmonic load can be obtained by
Px cr ¼ 2
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where �f is the frequency of the harmonic load in Hz. Fig. 9 shows the relationship between the critical

frequency and the in-plane compression for a stationary harmonic load, obtained from the analysis and
Eqs. (15) and (16). As the magnitude of the in-plane compressive force increases, the first critical frequency
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becomes smaller but the second critical frequency is constant. The results from the analysis and the for-

mulas are identical.
4.2. Response to a moving harmonic load

The relationship between the maximum displacement and the load frequency of the moving harmonic

load is shown in Fig. 10a for a load velocity of 125 m/s that is smaller than the critical velocity of the

moving load of constant amplitude (in this case, about 173 and 195 m/s for the systems with the in-plane
compressive forces of 3 N/m and 0, respectively). The critical frequencies are smaller than those of the

stationary harmonic load (compare with Fig. 8), and the critical frequency decreases with the in-plane

compression. For a given frequency except for the frequencies near the critical frequencies, the maximum

displacement becomes larger with the in-plane compression.

As shown in Fig. 10b, for a load velocity of 250 m/s that is larger than the critical velocities of the moving

load of constant amplitude, the critical frequency increases with the in-plane compression. For low fre-

quencies, the maximum displacement decreases with the in-plane compression. For frequencies larger than

the critical frequencies, the increase in the maximum displacement caused by the in-plane compression, for
a given frequency, becomes smaller as the frequency increases.

The relationship between the maximum displacement and the load velocity when a load frequency is 50

Hz that is smaller than the critical frequencies of the stationary harmonic load is shown in Fig. 11a. There

are two critical velocities and both the first and second critical velocities decrease in presence of the in-plane

compression. When a load frequency is 100 Hz that is larger than the critical frequencies of the stationary

harmonic load, as shown in Fig. 11b, the peaks corresponding to the second critical velocities are very

clearly observed but the peaks corresponding to the first critical velocities are not apparent. The in-plane

compression makes the second critical velocity smaller.
4.3. Critical velocity, critical frequency, and critical in-plane compressive force

The relationship between the critical velocity and the load frequency is shown in Fig. 12. The critical
velocity for a load frequency of 0 represents the critical velocity of the moving load of constant amplitude.

As the load frequency increases, the first critical velocity decreases and the second critical velocity increases.

For a given frequency, both the first and second critical velocities decrease with the existence of the in-plane

compression. From a number of parametric studies, formulas that can be suggested to predict the first and
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Fig. 10. Relationship between maximum displacement and load frequency (D ¼ 1%): (a) V ¼ 125 m/s (b) V ¼ 250 m/s.
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second critical velocities, Vcr1 and Vcr2 respectively, within the practical ranges of the variables for the
pavement systems, were found for the moving harmonic load as follows:
Vcr1 ¼ Vcr0 1

 
�

�f
fcr0

!0:72a

ðwhen �f 6 fcr0Þ ð18Þ
Vcr2 ¼ Vcr0 1

 
þ

�f
fcr0

!0:69a

ð19Þ
with
a ¼

ffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffi
DPk

p
m

q
Vcr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P 2

x

4DPk

s
ðwhen Px 6 2

ffiffiffiffiffiffiffiffi
DPk

p
Þ ð20Þ
where Vcr0 is the critical velocity of the moving load of constant amplitude defined by Eq. (13), �f is the load
frequency of the moving harmonic load in Hz, and fcr0 is the critical frequency of the stationary harmonic
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load defined by Eq. (15). The critical frequency for a given velocity and a given in-plane compression can

also be obtained solving Eqs. (18) and (19) for �f and can be written as
fcr ¼ fcr0 1

(
� V

Vcr0

� � 1
0:72a

)
ðwhen V 6 Vcr0Þ ð21Þ

fcr ¼ fcr0
V
Vcr0

� � 1
0:69a

(
� 1

)
ðwhen V P Vcr0Þ ð22Þ
Similarly, the critical in-plane compressive force for a given velocity and a given frequency can be deter-

mined solving Eqs. (21) and (22) for the in-plane compressive force Px. The critical velocities obtained from

the analysis and predicted by the suggested formulas are compared as shown in Fig. 13. The results from
the suggested formulas and those of the analysis are in very good agreement.
5. Summary and conclusions

The dynamic displacement response of a plate on an elastic foundation has been investigated when the

system is subjected to in-plane static compressive forces and a moving load with either constant or har-

monic amplitude variations. For the steady-state response to a moving harmonic load and for the response
to a moving load of constant amplitude, formulations were developed in the transformed field domains of

time, space, and moving space, and solutions were obtained using FFT. Analyses were performed to

investigate the effects of various parameters on the deflected shape, maximum displacement, and critical

values of the velocity, frequency, and in-plane compression, and to examine how the in-plane compression

affects the vibration and stability of the system. Expressions to predict the critical values of the velocity,

frequency, and in-plane compression were developed. The analysis results point to the following conclu-

sions.

• When the system is subjected to a moving load of constant amplitude:

� For velocities smaller than the critical velocity, if the in-plane compressive force is applied in the mov-

ing direction (x-direction), the maximum deflection and the peaks at the front and rear of the load

become larger and the deflected shape along y-axis becomes wider. In presence of the in-plane com-

pressive force in the y-direction, the maximum deflection becomes larger and the deflected shape along
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y-axis narrower, but it does affect the peaks at the front and rear of the moving load along x-axis.
� For velocities larger than the critical velocity, the deflected region is widely spread and the deflected

shapes behind and ahead of the load are clearly different. The frequency of the displacement fluctua-

tions in front of the moving load is larger than that behind the load. In presence of the in-plane com-
pressive force in the x-direction, the frequency of the displacement fluctuations in front of the moving

load increases, but that behind the moving load decreases. The in-plane compression in the y-direction
does not affect the displacement fluctuation frequency along x-axis. The frequency of the displacement

fluctuations in the y-direction becomes larger with the in-plane compression either in the x-direction or

in the y-direction.
� The critical velocity decreases in presence of the in-plane compression in the moving direction. The in-

plane compression in the y-direction does not affect the critical velocity. The in-plane buckling force in

the moving direction decreases as the velocity increases.
� The distance lag for a given velocity increases with the existence of the in-plane compression. The dis-

tance lag becomes significantly larger for velocities larger than the critical velocity.

• When the system is subjected to a stationary harmonic load:

� In presence of the in-plane compression, two critical frequencies are observed. The first critical fre-

quency is smaller than the second, and the second critical frequency is the same as the critical fre-

quency of the system without the in-plane compression.

� The critical frequency becomes smaller as the magnitude of the in-plane compressive force increases.

In other words, the in-plane buckling force decreases as the load frequency increases.
• When the system is subjected to a moving harmonic load:

� The in-plane compression in the y-direction does not affect the critical values of the velocity and fre-

quency.

� In presence of the in-plane compression in the x-direction, the critical frequency decreases when the

load velocity is smaller than the critical velocity of the moving load of constant amplitude. However,

for velocities larger than the critical velocity of the moving load of constant amplitude, the critical fre-

quency increases with the existence of the in-plane compression in the x-direction.
� For frequencies smaller than the critical frequency of the stationary harmonic load, two critical veloc-

ities exist and those critical velocities decrease when the in-plane compression in the x-direction is ap-

plied. For frequencies larger than the critical frequency of the stationary harmonic load, only the

second critical velocity is clearly observed, and it decreases with the application of the in-plane com-

pression.
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